Search results for "0303 Macromolecular and Materials Chemistry"

showing 2 items of 2 documents

Ligand engineering in Cu(ii) paddle wheel metal–organic frameworks for enhanced semiconductivity

2020

We report the electronic structure of two metal-organic frameworks (MOFs) with copper paddle wheel nodes connected by a N2(C2H4)3 (DABCO) ligand with accessible nitrogen lone pairs. The coordination is predicted, from first-principles density functional theory, to enable electronic pathways that could facilitate charge carrier mobility. Calculated frontier crystal orbitals indicate extended electronic communication in DMOF-1, but not in MOF-649. This feature is confirmed by bandstructure calculations and effective masses of the valence band egde. We explain the origin of the frontier orbitals of both MOFs based on the energy and symmetry alignment of the underlying building blocks. The effe…

TechnologyEnergy & FuelsMaterials ScienceMaterials Science Multidisciplinary02 engineering and technologyElectronic structure0915 Interdisciplinary Engineering010402 general chemistry01 natural sciencesENERGYPaddle wheelELECTRICAL-CONDUCTIVITYGeneral Materials Science0912 Materials EngineeringElectronic band structureLone pairScience & TechnologyChemistry PhysicalRenewable Energy Sustainability and the Environmentbusiness.industryLigand0303 Macromolecular and Materials ChemistryGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesChemistrySemiconductorChemical physicsPhysical SciencesDensity functional theoryMetal-organic framework0210 nano-technologybusinessSTORAGEJournal of Materials Chemistry A
researchProduct

Bandgap lowering in mixed alloys of Cs2Ag(SbxBi1−x)Br6 double perovskite thin films

2020

Halide double perovskites have gained significant attention, owing to their composition of low-toxicity elements, stability in air and long charge-carrier lifetimes. However, most double perovskites, including Cs2AgBiBr6, have wide bandgaps, which limit photo conversion efficiencies. The bandgap can be reduced through hallowing with Sb3+, but Sb-rich alloys are difficult to synthesise due to the high formation energy of Cs2AgSbBr6, which itself has a wide bandgap. We develop a solution-based route to synthesis phase-pure Cs2Ag(SbxBi1-x)Br6 thin films, with the mixing parameter x continuous varying over the entire composition range. We reveal that the mixed alloys (x between 0.5 and 0.9) dem…

Work (thermodynamics)Materials scienceBand gapFOS: Physical sciencesHalide02 engineering and technology0915 Interdisciplinary Engineering010402 general chemistry01 natural sciencesAtomic orbitalGeneral Materials ScienceThin film0912 Materials EngineeringCondensed Matter - Materials ScienceRange (particle radiation)Condensed matter physicsRenewable Energy Sustainability and the EnvironmentBowingMaterials Science (cond-mat.mtrl-sci)0303 Macromolecular and Materials ChemistryGeneral Chemistry021001 nanoscience & nanotechnologycond-mat.mtrl-sci0104 chemical sciencesPairing0210 nano-technologyJournal of Materials Chemistry A
researchProduct